Electrochemical Device for 96-Well Electrochemistry: Amperometry and Electrochemiluminescence

<u>Bastien Doumèche</u>, Jean-François Chateaux, Numa-Rainier Georges, Florian Bianco, Nathan Montmailler, Franck Charmantray, Béatrice Leca-Bouvier, Guillaume Octobre

Bastien Doumèche ICBMS (Institut de Chimie et Biochimie Moléculaire et Supramoléculaire) UMR 5246 CNRS, Université Lyon 1, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France

doumeche@univ-lyon1.fr

Detection of redox species (bio)chemical reactions (or other applications) by electrochemical oxidation or reduction. *In theory* possible for any chemical species.

Several well established methods Cyclic voltammetry, chronoamperometry, square wave voltammetry...

What is needed for electroanalysis ?

- Electrochemical reaction interface: Working electrode (+ counter + reference electrode)
- Devices: potentiostats (1 to 8 ways)

Multicomponent/multiparameter interface

Biocatalyst

Optimization is time-consuming, mostly empirical or experience based

High Throughput Electrochemistry Needed

The CEITOP Project

+

Software for data acquisition and control

Jean-François Chateaux INL, Université Lyon 1

Florian Bianco INL, Université Lyon 1

CEITOP Project ceitop.univ-lyon1.fr

3

Electrochemical experiments are performed on 96 multiplexed electrodes screen-printed on a PCB. Working electrodes are made of carbon and counter/ref are Ag|AgCl electrodes.

PCB is only a connector between the device and the 96 electrodes (no electronics)

Samples are 96 drops of 35-50 µL covering each independent electrodes

12 columns × 8 raws

Electrochemical method: Intermittent Pulsed Amperometry (IPA)

2 electrodes systems: Working (Carbon) and Counter/reference (Ag/AgCl) WE is switched from a polarized state to an open state ($\neq \emptyset$) periodically. During polarization, current is measured: **one I** vs time plots per frame (Chronoamperometry-like)

I vs time plots × number of frame \times 96

Results for a single electrode (should be mutipled by 96)

- Potential is applied for 500 ms with one acquisition every 0.25 ms resulting in a I vs. t frame of 2000 data points.
- A second frame is acquired after 60 000 ms (1 min).
- The two frames are nearly identical (shown as function of data point number)
- As a first approximation, the I vs. t plot was fitted to the Cottrell equation.

Results for a single electrode (should be mutipled by 96)

- Potential is applied for 500 ms with one sample every 2.5 ms resulting in a I vs. t frame of 200 data points.
- Ten nearly identical frames are acquired during 60 000 ms (1 min) (left).
- Inter electrode variability still occurs due to non-optimized screen-printing (right) (*work in progress*).

Empirical equation... $I = nFAC^* \sqrt{\frac{D}{\pi t} + \frac{k}{t} + I_0}$... to be justified by diffusion-reaction

Home made software for automatic data analysis of all frames: **POSTER S1-P026** (part of Rainier-Numa GEORGES PhD work)

Model reaction

Metrics:

2 minutes – 96 electrodes 10 frames of 1sec /electrode 400 data point per frame = **384 10³ data points** Analysis duration: some sec !

Sensitivity: 7.6 µA.nM⁻¹ LoD below 200 µM (Screen-printed electrodes)

Bastien Doumèche - ICBMS UMR 5246 - Université Lyon

Model reaction

10

part of Nathan Montmailler Master work

Luminol oxidation in the presence of H_2O_2 illustrates the periodic polarization of the electrodes (still some defects due to screen printing)

Experimental setup

[H₂O₂] = 50 nM

[Luminol] = 100 μ M

Veronal buffer 50 mM, pH = 8.5

Maximum signal obtained for 800 mV vs Ag | AgCl pseudo ref. (non modified SPE)

11

[H ₂ O ₂] = 0.8 - 50 nM	
[Luminol] = 100 μM	
Véronal buffer 50 mM, pH = 8.5	
Applied potential : 800 mV vs Ag AgCl pseudo ref.	
Applied potential : 800 mV vs Ag AgCl pseudo ref.	

Higher frame number higher sensitivity but... long analysis time

Pulse width is the key parameter for short time analysis

Pulse width is varied from 1 ms to 1000 ms:

- Number of frame is constant
- Analysis time increases drastically (expected)
- For short pulses width, higher sensitivity is achieved

Examples: for 1 ms pulse width, potential is applied every 12 ms on a column

Close to continuous potential application on the 96 electrodes...

... but potential could be modified on each of them

1 ms pulse: 2 min for 96 electrodes and sensitivity of 60 nM⁻¹ H₂O₂ vs 1000 ms pulse : 40 minutes for the same results

What's next ?

Technicals:

Improve Screen-Printing

"Higher" volumes: Drop (50 μL, hemispherical) to wells (400 μL, cylinder) Replace PCB by plastics, paper... (true disposable electrodes)

Fundamentals:

"True" equations for analysis > Physical parameters Study more deeply the ECL reaction using IPA

Applications:

Screening of chemical libraries for drug discovery (enzyme inhibitors) ECL and electrochemical Biosensors optimization Others ?

Thanks you for attention and to

